SciELO - Scientific Electronic Library Online

 
vol.29 issue2 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

Share


Revista de la Sociedad Científica del Paraguay

Print version ISSN 0379-9123On-line version ISSN 2617-4731

Rev. Soc. cient. Parag. vol.29 no.2 Asunción Dec. 2024

https://doi.org/10.32480/rscp.2024.29.2.56660 

Artículo Original

Characterization and studies of genetic diversity of sweet potato from Paraguay

Caracterización y estudios de diversidad genética de batata en Paraguay

Victoria R. Santacruz-Oviedo1 
http://orcid.org/0000-0001-5131-9415

Cipriano R. Enciso-Garay1 
http://orcid.org/0000-0002-8691-2689

Fanni P. Ruiz-Samudio1 
http://orcid.org/0000-0003-4065-4861

Amalio R. Mendoza2 
http://orcid.org/0000-0001-9412-0684

1Universidad Nacional de Asunción, Facultad de Ciencias Agrarias. San Lorenzo, Paraguay.

2Instituto Paraguayo de Tecnología Agropecuaria, Departamento de Agricultura Familiar San Lorenzo, Paraguay


ABSTRACT

The objective was to characterize the genotypes and obtain data on the genetic diversity of sweet potatoes. The experimental design was an RCBD with 26 treatments and three replications. It was evaluated total productivity, commercial and non-commercial root yield, number of roots per plant, biomass, root shape, and root color. The estimation of genetic diversity was obtained by the similar mean dissimilarity measure and, the delimitation group by the UPGMA dendogram. As a measure of proximity distances, the Euclidian Quadratic dissimilarity measure was used. and the number of clusters was determined using the Mojena Criterion. The collection was grouped into seven clusters. The highest number of accessions was grouped in cluster III, with nine accessions, cluster II with six accessions, cluster IV, with six accessions, cluster VII with two accessions and cluster I, V, and VII with one accession each. The greatest genetic distance was found between Morotí Guazú and Ib-019 with 40,443 and the most similar were Morado and Pyta guazú with a Euclidean dissimilarity measure value of 1098. Root productivity is the most important variable for genetic distance. The predominant skin color of the collection is cream and pale yellow flesh color.

Keywords: clusters; genetic distance; germplasm; Ipomoea batatas L.; production.

RESUMEN

El objetivo fue caracterizar genotipos y obtener datos sobre la diversidad genética de batata. El diseño fue en BCA con 26 tratamientos y tres repeticiones. Fueron evaluadas productividad total, rendimiento comercial y no comercial de raíz (t ha-1), número de raíces por planta, biomasa aérea, forma y color de la raíz. La diversidad genética fue obtenida por la medida de disimilaridad media similares y para delimitación de grupos se utilizó el método de dendrograma UPGMA. Como medida de proximidad de distancias se utilizó la medida de disimilitud Euclidiana Cuadrática. La cantidad de clusters fue por el Criterio de Mojena. El mayor número de accesiones fue agrupado en el cluster III, con nueve accesiones, cluster II con seis accesiones, cluster IV, con seis accesiones, cluster VII con dos accesiones y cluster I, V y VII con una accesión cada una. La mayor distancia genética fue entre Morotí Guazú (6) e Ib-019 (23) con 40.443 y los más similares resultaron Morado (3) y Pyta guazú (9) con un valor de 1098. La productividad de raíces es la variable de mayor importancia para la distancia genética. El color predominante de la piel de la colección es crema y color de carne amarillo pálido.

Palabras clave: distancia genética; germoplasma; grupos; Ipomoea batatas; producción

INTRODUCTION

The sweet potato (Ipomoea batatas L [LAM]), is a convolvulaceae from America1, whose roots and leaves contain nutraceutical properties highly valued for consumption2, and also for food security3) (4. It presents a wide range of root pigmentation5, with orange pulp varieties having the highest content of beta-carotene and carotenoids6.

It is tolerant to a wide range of edaphic and climatic conditions, making it one of the crops resilient to climate change7) (8) (9) (10. Traditional farmers have a fundamental role in the conservation and generation of diversity in cultivated species11, alongside indigenous peoples12. Understanding the genetic diversity of this important crop is essential, given the continuous rise in food demand and the need to preserve plant genetic resources"13.

The countries with the highest production of this item are Asia, Africa, and the USA14 and to it occupies the fifth place in world production, after wheat, corn, cassava, and potatoes, which are the most used carbohydrate sources15. In Paraguay, it is called “batata” and “jety” (guaraní), and13 other names in America such as “boniato”, “camote”, “batata doce” (portugués) and sweet potato.

The germplasm characterization determines the expression of highly heritable characters ranging from morphological, physiological, or agronomic characteristics, including agrobotanical traits such as plant height, leaf morphology, flower color, seed traits, phenology, and the overwintering capacity of perennial plants16.

Sweet potato is a cross-pollinated and highly heterozygous crop that results in great variability for crop improvement; knowing about genetic diversity helps the breeder to choose desirable parents for use in breeding programs17)(16. Studies of genetic divergence between genotypes in crops are used to analyze the genetic variability in the collection, identify closer or duplicate genetic materials, and generate parameters for the selection of genetically different parents that, when crossed, enable a greater heterotic effect, increasing the chances of obtaining maximum genetic variability and superior genotypes in generations18.

For the analysis of genetic diversity, several multivariate statistical procedures are available, such as grouping analysis or clustering. The diversity study carried out by cluster analysis has the purpose of bringing together, by some criterion of similarity or dissimilarity, the parents of various groups, in such a way that there is greater homogeneity within the group and greater heterogeneity between groups19. Cluster analysis is a useful tool because it can group objects by the degree of similarity sufficient to bring them together in the same set20.

There are other more specific and advanced methodologies for the analysis of genetic diversity21 that can offer more detailed results, but are usually more expensive to execute, such as the use of molecular technology, which is a challenge for some institutions, as it requires advanced laboratory facilities and technical capacity22.

To understand the genetic diversity of sweet potatoes, both morphological and molecular markers have been used 23) (24. Morphological descriptors are potentially useful for clonal identification, due to their high variability and the estimation of genetic distances25, and have been used as a first step to understanding both plant diversity and the conservation of plant genetic resources26.

In genetic improvement programs, which include a selection of superior genotypes, it is necessary to have information about the germplasm to be used, its genetic potential and genetic parameters intrinsic to the characteristics that are to be improved27.

In some Latin American countries, including Paraguay, some factors postpone in-situ and ex-situ conservation and study of this species, mainly resources for research, advancement of extensive agriculture, and migration of farmers and indigenous people. The objective of this work was to characterize the genotypes of a collection and obtain preliminary data on the genetic diversity of sweet potatoes, identifying those most promising for genetic improvement programs.

MATERIALS AND METHODS

The research was conducted at the Experimental Field of the Faculty of Agricultural Sciences (FCA) of the National University of Asunción (UNA), San Lorenzo (25°21ʼS and 57°27ʼW, 125 msnm). The place's average minimum and maximum temperature is 24°C and 32°C, respectively, with an average annual rainfall of 1,400 mm28. The results of the soil analysis indicate that the experimental area belongs to the order Ultisol and sandy loam texture with the following properties: pH= 6.28, organic matter= 0.47%, P= 9.03 (mg/kg), Ca -2= 1.30 cmolc/kg, Mg+2 = 0.54 cmolc/kg, K+= 0.16 cmolc/kg, Al+3 + H+ = 0.

Twenty-six sweet potato genotypes were evaluated, obtained from the sweet potato collection of the UNA/FCA Experimental Field and the Paraguayan Institute of Agrarian Technology (IPTA) collected from producer’s farms.

The genotypes and corresponding numbering are: Moroti (1), Taiwanes (2), Morado (3), Pyta (4), Sa'y jú (5), Moroti Guazú (6), Boli (7), Pyta Uruguayo (8), Pyta Guazú (9), Yety Mandió (10), Taiwanes2 (11), Uruguayo (12), Dacosta (13), Yety Paraguay (14), Andai (15) and hybrid clones obtained by natural polycrossing: Ib-003 (16), Ib-005 (17), Ib-006 (18), Ib-010 (19), Ib-011 (20), Ib-012 (21), Ib-018 (22), Ib-019 (23), Ib-020 (24), Ib-022 (25) and Ib-023 (26) (Table 1, 3).

The experimental design was randomized complete block design, with 26 treatments, where each genotype corresponds to one treatment and three replicates, totaling 90 experimental units (EU). Each UE consisted of four rows of 3.0 m long and 3.0 m wide, separated from each other by 2 m streets, with a useful area of 6.0 m2 and 11 plants per row. Planting was done from branches with 6-8 nodes.

The harvest was carried out 150 days after planting and the following evaluations were made: total productivity, commercial and non-commercial root yield (t ha-1), the total number of roots per plant and biomass of the aerial part (stem, leaves and petioles) (t ha-1). A commercial root was considered as that with mass equal to or greater than 100 g, without damage or deformation29. In addition, the characterization of root shape and color was carried out according to the descriptors of Huaman5.

For the grouping, the UPGMA (Unweighted Pair Group with Arithmetic Mean) hierarchical method where the agglomeration criterion is the average distance of all the individuals of a conglomerate with all the individuals of another30.

The Mojena Criterion is a method used to determine the optimal number of clusters or groups in cluster analysis. It is based on the concept of the Quadratic Euclidean Distance31, which measures the dissimilarity between data points within a cluster and measures the quality of the grouping using the Cophenetic correlation coefficient32. This value measures the correlation between the initial and final distances with which individuals have joined during the development of the method. Afterward, an analysis that explored and described each cluster in detail was conducted.

The study of the characters’ relative importance in the genetic divergence prediction was carried out based on the method proposed by Singh33 and the Scott and Knott method34 for comparing the means of the significant variables. For statistical analyses, the software RStudio Team35 was used.

RESULTS AND DISCUSSION

The UPGMA hierarchical method with Euclidean distances managed to group the genetic materials through their five agronomic characters into sevens (Figure 1) using the Mojena criterion31. The cophenetic correlation coefficient gave a value of 0.75, indicating an adequate adjustment in the grouping. Seven groups were defined and distributed according the genetic distance among 26 accessions (Figure 1).

Figure 1: Dendrogram of genetic distance of agronomic characters of sweet potato accessions. UNA-FCA, San Lorenzo, Paraguay. 2018  

Seven distributed clusters were defined based on the genetic distance between 26 accessions. The largest number of accessions was grouped in Cluster III, with nine accessions, cluster II with six accessions, cluster IV, with six accessions, cluster VII with two accessions, and Clusters I, V, and VII with one accession each (Figure 1, Table 1). The genotypes grouped under the same cluster would have little genetic divergence from each other, which is why greater segregation is expected in crosses between different groups or clusters. The accessions grouped in Cluster III present superior characteristics in the variables studied and the accessions grouped in Cluster IV present characteristics of lower productivity. To obtain genetic variability, those accessions that are found with a greater Euclidean distance from each other should be considered.

On the other hand, accessions that present desirable productive characteristics in a collection can be directly selected by the plant breeder as promising.

The cultivars of a group have the same or almost the same characteristics that simplify the process of selecting crosses from a collection or germplasm bank36.

The knowledge of genetic divergence generates parameters for the selection of parents that, when crossed, enable a greater heterotic effect in their descendants18, increasing the possibilities of obtaining superior genotypes in segregating generations37.

Table 1: Agronomic characteristics of four sweet potato clusters expressed as average. UNA-FCA, San Lorenzo, Paraguay. 2018. 

Cluster Root productivity (t ha-1) Comercial root yield (t ha-1) Not commercial root yield (t ha-1) Comercial root number Not comercial root number Total number of root Biomass (t ha-1)
Cluster I 24,9 1,3 3,6 2,4 1,78 4,2 15,8
Cluster II 22,3 19,8 2,4 2,5 1,6 4,1 26,8
Cluster III 23,1 20,6 2,5 2,6 1,6 4,2 36,4
Cluster IV 9,1 7,3 1,8 1,57 1,6 3,2 32,8
CLuster V 10,6 9,2 1,4 1,3 0,9 2,3 50,5
Cluster VI 39,0 35,4 3,6 3,7 2,2 5,9 25,4
Cluster VII 37,9 34,5 3,4 2,4 2,4 4,8 36,6

Cluster I: Moroti; Cluster II: Taiwanes, Boli, Uruguayo, Ib-010, Ib-012, Ib-018; Cluster III: Morado, Pyta, Pyta Uruguayo, Pyta Guazú, Andai, Ib005, Ib-020, Ib-022, Ib-023. Cluster IV: Sayju, Dacosta, Yety Paraguay, Ib-003, Ib-006, Ib-011; Cluster V: Moroti Guazu; Cluster VI: Yety mandio; Ib-019; Cluster VII: Taiwanes2.

The proximity matrix of Euclidean distances (Figure 2), the proximities of the distances are observed that, when individuals with a greater Euclidean distance from each other are used as parents, greater genetic variability could be obtained.

Figure 2: Matrix of dissimilarity or proximity measures of 26 sweet potato genotypes using Euclidean distances considering five agronomic characters. UNA-FCA San Lorenzo. Paraguay. 2018  

The most similar genotypes are Morado3 and Pyta guazú9 with a Euclidean dissimilarity measurement value of 1098, indicating the existence of little genetic variability between similar genotypes or those with lower Euclidean distance. The genotypes Morotí Guazú6 and Ib-01923 presented the greatest distance measurement equivalent to 40,443, indicating that they are the least similar among the 26 genotypes evaluated, therefore, to achieve heterozygous offspring it is necessary to choose parents with the greatest Euclidean distance.

Understanding the genetic diversity in a germplasm collection is of great importance, as it allows the identification of duplications of accessions, which can be eliminated and thus reduce space and operational costs in conservation.

Among the characters studied in the diversity of the genotypes, it is observed that root productivity and total number of roots presented the highest percentage of relative contribution, with values of 48.32% and 14.61%, respectively, which indicates that the Groupings of genotypes were predominantly influenced by these characteristics and they differed on these variables (Table 2).

The interest in the evaluation of a smaller number of variables, which contribute to the discrimination of genotypes, enables savings in time and labor, both in data collection and in the management of the experiments, in addition to reducing costs in future analyses18. In this sense, biomass and commercial yield constitute the least important characteristics for the set of accessions characterized in this work (Table 2). The productivity of the green mass of branches does not influence the root format and the total and commercial productivity of roots, but it can interfere with the size of the roots, and larger branches, they tend to form larger roots38.

Contribution of leaf size for genetic distance found higher39, characters with lower contribution should be discarded for future studies40. It was found a lower contribution for the weight of non-commercial roots and a higher contribution for the total number of roots41 also, it found a more significant contribution for the yield of roots and individual storage of roots, for the genetic distance in sweet potato42.

For root productivity, genotypes 23 (Ib -019) and 11 (Yety Mandió) formed the cluster with the highest yield with values of 41.9 t ha-1 and 37.9 t ha-1, respectively. The high coefficient of variation for this parameter indicates the existence of variability (Table 3). Other authors, it found a total root yield of 43.0 t ha-1, a value higher than that of this research work41 meanwhile, obtained root yields of 12.0 t ha-1 in the best genotype evaluated42; being this result lower than those obtained in this experiment.

Table 2: The relative contribution of characters to the genetic distance of sweet potato clones. UNA/FCA, San Lorenzo, Paraguay. 2018 S. J. Estimated value of Singh's methodology (1981) 

Variables S.J* Valor (%)
Root Productivity 4268.2 48.3
Comercial root yield (t ha-1) 1098.3 12.4
No comercial root yield (t ha-1) 1235.9 14,0
Total root number 1290.4 14.6
Biomass (t ha-1) 939.7 10.6

Under local conditions, on a producer's farm, productivity is less than 10 t ha-143, therefore, the values found in the accessions studied can be considered promising for the selection of parents with high productive potential. For productivity, all genotypes greater than 20 t ha-1 are considered to have high potential, and they are the genotypes Yety mandió10, Pyta Uruguayo8, Ib-020 (24), Moroti1, Taiwanes2, Boli7, Uruguayan12, Ib-00517, Ib-02326, Pyta4, Ib-02225, Morado3, Ib-01019 and Pyta Guazu9.44Although the variability of fresh weight is an intrinsic characteristic of the plant material, as well as the variety, climatic conditions, agronomic practices, and growth form of the storage root in a certain type of soil, it affects the acceptability and preference of the consumers.

In the analysis of commercial root yield, genotypes Ib-1923, Taiwanes211, Yety mandió10, Pyta uruguayo8, and Ib -02024 obtained values higher than the other genotypes between 38.6 and 30.7 t ha-1, and genotypes 6.18, and 20 between 12.41 and 10.7 t ha-1 presenting a high coefficient of variation (37.5%) (Table 3) so it is inferred that there is variability between the genotypes for this variable, also considering the environmental factor and cultural management that affect this feature. 45Studies indicate that the amplitude of variation in productivity demonstrates that there is genetic variability, evidencing a situation favorable to improvement, when the objective is the selection of superior genotypes.

In relation to non-commercial root yield, the Taiwanes2 and Moroti1 genotypes present 4.7 and 4.5 t ha-1 of non-commercial roots and and genotype Pyta(4 ) presented the lowest value (Table 3). Other researchers41 found an average yield of commercial and non-commercial roots of 23.0 t ha-1 and 19.0 t ha-1 respectively. On the other hand46, when evaluating sweet potato genotypes, obtained means of 31.2 t ha-1 and 6.2 t ha-1, for the same variables. For the number of roots per plant, the genotypes Ib-02023, Pyta Guazu8, Taiwanes2, and (Morado 3 presented the greatest number of roots, with means of 6.97; 6.37; 6.11, and 5.81 roots plant-1 respectively, which are also among the most productive.

For biomass, 14 genotypes obtained statistically similar values, between 50.53 and 32.39 t ha-1, and eight genotypes obtained statistically similar biomass values between 31.1 and 27.4 (Table 3). In general, genotypes with high biomass values resulted in lower storage root values. 47Biomass is an important indicator in terms of the efficiency of the species in the use of the environmental and genetic resources available to it. Likewise, it provides an idea of its potential, depending on the amount of fresh material it can provide for different uses.

Tabla 3: Agronomics characteristics of 26 sweet potato genotypes. UNA-FCA, San Lorenzo, Paraguay. 

Root productivity (t ha-1) Comercial root yield (t ha-1) No comercial root yield (t ha-1) Total number of root per plant Biomass (t ha-1)
Genotype Genotype Genotype Genotype Genotype
23 41,8 a 23 38,6 a 2 4,7 a 23 6,9 a 6 50,5 a
11 37,9 a 11 34,5 a 1 4,5 a 8 6,4 a 17 43,0 a
10 36,2 b 10 32,2 a 10 4,0 a 2 6,1 a 18 40,3 a
8 33,5 b 8 30,8 a 25 3,8 a 3 5,8 a 9 37,6 a
24 32,9 b 24 30,8 a 26 3,6 a 25 5,3 b 15 37,2 a
1 29,4 c 1 26,9 b 11 3,4 a 10 4,8 b 11 36,6 a
2 29,4 c 2 25,3 b 5 3,3 a 11 4,7 b 3 36,6 a
7 27,6 c 7 24,9 b 3 3,3 a 19 4,3 c 26 36,2 a
12 27,5 c 4 24,9 b 23 3,2 a 5 4,3 c 25 35,4 a
17 26,8 c 12 24,5 b 12 3,0 a 1 4,2 c 16 34,5 a
26 26,3 c 19 22,7 b 8 3,0 a 24 3,9 c 24 34,3 a
4 25,6 c 26 22,6 b 9 2,8 a 14 3,9 c 4 33,8 a
25 24,7 c 3 21,7 b 7 2,6 a 21 3,6 c 8 33,2 a
3 24,6 c 25 20,9 b 13 2,3 b 12 3,7 c 13 32,4 a
19 24,5 c 17 18,3 c 24 2,3 b 7 3,7 c 5 31,1 b
9 20,5 d 9 17,6 c 17 1,9 b 26 3,5 c 20 31,0 b
15 17,7 d 15 16,2 c 20 1,9 b 17 3,4 c 2 29,3 b
21 17,6 d 22 16,1 c 14 1,8 b 9 3,1 c 21 29,1 b
22 17,5 d 21 15,9 c 21 1,7 b 13 3,1 c 22 28,5 b
6 14,1 e 6 12,4 d 6 1,7 b 20 3,0 c 10 27,9 b
18 12,4 e 18 11,5 d 19 1,5 b 15 3,0 c 7 27,8 b
20 12,1 e 20 10,2 d 15 1,5 b 22 2,9 c 14 27,5 b
5 10,6 e 16 93,6 d 22 1,4 b 4 2,8 c 12 23,1 b
16 10,3 e 5 72,6 d 18 1,1 b 16 2,5 c 19 23,0 b
14 87,9 e 14 70,2 d 16 1,0 b 18 2,4 c 23 22,8 b
13 85,8 e 13 +62,9 d 4 0,7 b 6 2,3 c 1 15,8 b
C.V (%) 28,6 32,3 37,5 28 23,1

Gen: Genotype. Means followed by the same letter in the column do not differ from each other according to the Test of Scott-Knott test (p= 0.05), C. V: Coefficient of variation. Moroti (1), Taiwanes (2), Morado (3), Pyta (4), Sa’y jú (5), Moroti Guazú (6), Boli (7), Pyta Uruguayo (8), Pyta Guazú (9), Yety Mandió (10), Taiwanes2 (11), Uruguayo (12), Dacosta (13), Yety Paraguay (14), Andai (15) Ib-003 (16), Ib-005 (17), Ib -006 (18), Ib -010 (19), Ib -011 (20), Ib -012 (21), Ib -018 (22), Ib -019 (23), Ib -020 (24), Ib -022 (25) y Ib -023 (26).

In relation to the qualitative descriptors for root (Table 4), the elliptical shape is found in a higher percentage (46.2%) and the obovate shape in a lower percentage (3.8%). The local consumer generally prefers elongated shapes, and roots of medium thickness, which stand out for culinary use in preparations preferably boiled. However, in gastronomy, there is a wide variety of preparations such as baked and fried. The characteristic, more elongated roots of elliptical shapes, rather than round or oblong, is another objective proposed for the selection of varieties. Those varieties44 of various shapes can be used for agroindustry.

Table 4: Participation of 26 sweet potato genotypes for qualitative root nominal scale descriptors. UNA-FCA, San Lorenzo, Paraguay. 2018 

Descriptor   Porcentaje (%)
Root shape Round 15,4
  Long eliptic 34,8
  Obovate 3,8
  Elíptic 46,2
Skin Color Crem 53,8
  Yellow 7,7
Predominant colour Dark purple 19,23
  Red-purple 15,38
  Orange 3,8
Predominant colour intensity Pale 15,4
  Intermediate 38,4
  Dark 46,1
Flesh Colour Cream 23,7
Predominante colour Dark ream 11,5
  Pale yellow 46,1
Secundary flesh colour Ausent 50
  White 7,6
  Cream 3,8
  Orange 19,2
  Yellow 15,3
  Red purple 3,8
  Dark purple 3,8

The sweet potatoes collection consists mainly of cream-colored skin (53.8%) with dark purple (19.2%) and purplish red (15.4%) also present in significant amounts. Yellow (7.7%) and orange (3.8%) are present in smaller percentages. The predominant color has a higher percentage of dark shades (46.1%). The meat color is mainly pale yellow (46.1%), and the secondary color is absent in 50% of the samples, with other colors present in smaller percentages. These different shapes and colors highlight the variability in these descriptors (Table 4).

In marketing establishments, the purple-skinned sweet potato is prevalent, suggesting that it is the preferred pigment for local consumers. This characteristic should be taken into consideration for future improvement programs. The purple pigment has a higher content of beta-carotene and carotenoids6.

CONCLUSION

The UNA/FCA collection presents sweet potato genotypes that can be used for genetic improvement programs. The genetic distances of the studied germplasm are grouped into seven clusters. Some characters, such as biomass, had less importance for diversity, with total root productivity being the variable that contributed the most to genetic distance.

There is variation in the studied population that can be used for genetic improvement related to productivity per hectare and per plant, root shape and color, since there is the possibility of generating variability between the studied clusters.

REFERENCIAS BIBLIOGRÁFICAS

1. Echecopar G, Angelelli P, Galleguillos G, Schorr M. Capital semilla para el financiamientode las nuevas empresas-Avances y lecciones aprendidas en América Latina. Washington DC: Banco Interamericano de Desarrollo; 2006. Disponible en: https://publications.iadb.org/es/publications/spanish/viewer/Capital-semilla-para-el-financiamiento-de-las-nuevas-empresas-Avances-y-lecciones-aprendidas-en-Am%C3%A9rica-Latina.pdf [ Links ]

2. Fracica Naranjo G, Matíz BFJ, Hernández G, Mogollón C. Y. Capital semilla para la financiación de start ups con alto potencial de alto crecimiento en Colombia. Revista EAN. 2011;(71):126-146. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-81602011000200009Links ]

3. Umana M. Capital semilla y la ecuación de inversión en emprendimiento. Anuario de Investigación Universidad Católica de El Salvador. 2019; 8:59-71. Disponible en: https://camjol.info/index.php/aiunicaes/article/view/8341Links ]

4. Berrio Crecían NM. El Capital Semilla como Alternativa de Sostenibilidad Socioeconómica en Colombia. Cartagena de Indias: Universidad Nacional Abierta y a Distancia; 2018. Disponible en: https://repository.unad.edu.co/handle/10596/18296 [ Links ]

5. Ballesteros Galvis A. Medición del grado de adopción de las prácticas de sostenibilidad y su relación con la efectividad de las empresas creadas a través de los proyectos aprobados por Fondo Emprender en los años 2016 y 2017 convocatorias 47 y 57 respectivamente en Bogotá [Tesis de postgrado]. Bogotá: Universidad EAN; 2021. 122 p. Disponible en: https://repository.universidadean.edu.co/bitstream/handle/10882/11572/BallesterosJose2021.pdf?sequence=1&isAllowed=y [ Links ]

6. Ministerio de Industria y Comercio. Marco Legal. Asunción, Paraguay: MIC; 2022. Disponible en: https://www.mipymes.gov.py/marco-legal/ [ Links ]

7. Ministerio de Industria y Comercio. Capital Semilla para Mujeres Emprendedoras "REEMUJERPY". Asunción, Paraguay: MIC; 2023. Disponible en: https://www.mipymes.gov.py/reemujerpy/ [ Links ]

8. González Burgos P, Caballero Almirón N. El rol de la mujer emprendedora y el impacto en la economía paraguaya. Rev. Cienc. Econ. 2022;3(5):1-12. Disponible en: https://revistascientificas.una.py/index.php/reco/article/view/2509#:~:text=El%20estudio%20demostr%C3%B3%20que%20las,puedan%20fortalecer%20a%20las%20mismasLinks ]

9. Encina Ayala LM, López Méndez G. Emprendedurismo Femenino: Un estudio multi-caso de factores que influyen en la Intención Emprendedora. Ciencia Latina. 2021;5(2):1642-1659. Disponible en: https://ciencialatina.org/index.php/cienciala/article/view/374Links ]

10. Villalba Benítez EF, Ortega Carrasco RJ. El perfil emprendedor en Paraguay, análisis de la población juvenil. Suma de Negocios. 2021;12(26):31-40. Disponible en: https://www.redalyc.org/journal/6099/609967056004/html/Links ]

11. Orihuela-Ríos NC. Emprendimiento femenino: características, motivos de éxito, limitantes, involucrados y consecuencias. Innova Research Journal. 2022;7(1):109-122. Disponible en: https://revistas.uide.edu.ec/index.php/innova/article/view/1946Links ]

12. Ordoñez Abril DY, Castillo López AM, Rodríguez Bravo IM. Empoderamiento de la mujer en el emprendimiento y la innovación. Población y Desarrollo. 2021;27(52):69-91. Disponible en: http://scielo.iics.una.py/scielo.php?script=sci_arttext&pid=S2076-054X2021000100069Links ]

13. Contreras P, Vargas EE, Cruz G, Serrano R. Emprendimientos femeninos: de lo económico a lo sustentable. Espacios. 2020;41(31):225-237. Disponible en: https://www.revistaespacios.com/a20v41n31/a20v41n31p18.pdfLinks ]

14. Elizundia Cisneros ME. Desempeño de nuevos negocios: perspectiva de género. Contaduría y Administración. 2015;60(2):468-485. Disponible en: https://www.redalyc.org/pdf/395/39535648010.pdfLinks ]

15. Calderón YP, Espinosa Espíndola MT. Emprendimiento femenino en México: Factores Relevantes para su creación y permanencia. Tendencias. 2019;20(2)116-137. Disponible en: https://revistas.udenar.edu.co/index.php/rtend/article/view/4972Links ]

16. Rodríguez-Jiménez M, Leiva JC, Castrejón-Mata C. ¿Cómo son las mujeres que lideran PYMES? Un estudio aplicado a Costa Rica. Revista CEA. 2017;3(5):29-40. Disponible en: https://revistas.itm.edu.co/index.php/revista-cea/article/view/646Links ]

17. Segarra HP, Chabusa JL, Legarda CM, Espinoza EI. Perfil de la Mujer Emprendedora en Latinoamérica: un marco referencial para Ecuador. Espacios. 2020;41(19):343-354. Disponible en: https://www.revistaespacios.com/a20v41n19/20411925.htmlLinks ]

18. Sabater Fernández C. La mujer emprendedora: identidad profesional y factores culturales de género. Femeris. 2018;3(2):55-78. Disponible en: https://e-revistas.uc3m.es/index.php/FEMERIS/article/view/4320Links ]

19. Ruíz Navarro JR, Camelo Ordaz MdC, Coduras Martínez A. Mujer y Desafío Emprendedor en España: características y determinantes. Economía Industrial. 2012;(383):13-22. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=3903695Links ]

20. Ruiz Sánchez MdC, Peña Guerrero JV, Prieto Cubillos BL. Caracterización y motivaciones para el emprendimiento femenino en MIPYMES de Villavicencio - Colombia. Tendencias. 2020;21(2):146-166. Disponible en: https://revistas.udenar.edu.co/index.php/rtend/article/view/5880Links ]

21. Brunet I, Pizzi A. Discursos de género de las mujeres emprendedoras por oportunidad. El caso español. Revista Austral de Cienc. Soc. 2017;(32):167-184. Disponible en: https://www.redalyc.org/pdf/459/45955903009.pdfLinks ]

22. Sepúlveda Rivillas CI, Gutierrez WR. Sostenibilidad de los emprendimientos: Un análisis de los factores determinantes. RVG. 2016;21(73):33-49. Disponible en: https://www.produccioncientificaluz.org/index.php/rvg/article/view/21055Links ]

23. Salinas Ramos F, Osorio Bayter L. Emprendimiento y Economía Social, oportunidades y efectos en una sociedad en transformación. CIRIEC-España, Revista de Economía Pública, Social y Cooperativa. 2012;(75):128-151. Disponible en: https://ciriec-revistaeconomia.es/wp-content/uploads/CIRIEC_7506_Salinas_y_Osorio.pdfLinks ]

24. Bóveda Q, Oviedo A, Yakusik AL. Manual de Emprendedorismo. San Lorenzo: Incuna; 2015. Disponible en: https://www.jica.go.jp/Resource/paraguay/espanol/office/others/c8h0vm0000ad5gke-att/info_11_01.pdf [ Links ]

25. Rodríguez Moreno DC. Emprendimiento sostenible, significado y dimensiones. Katharsis. 2016;(21):449-479. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=5850542Links ]

26. Pino Meléndez V, Alcívar Torres L, Cobos Mora F, Ramírez González G, Julca Otiniano A. Evaluación de la sostenibilidad de fincas productoras de cacao (Theobroma cacao L.) en el cantón Puebloviejo de la provincia de Los Rios, Ecuador. Rev. Soc. Cient. Py. 2023;2(28):299-328. Disponible en: https://doi.org/10.32480/rscp.2023.28.2.298Links ]

27. ONU Mujeres. FINANZAS PARA TODAS: Experiencias e iniciativas innovadoras para la inclusión financiera de las mujeres y una recuperación con lentes de género en América Latina. América Latina y el Caribe; 2021. Disponible en: https://lac.unwomen.org/sites/default/files/Field%20Office%20Americas/Documentos/Publicaciones/2021/12/FinanzasParaTodas_02-12-21_Signed.pdfLinks ]

28. Guzmán Cuevas JJ, Rodríguez Gutiérrez MJ. Comportamiento de las mujeres empresarias: una visión global. Revista de Economía Mundial. 2008;(18):381-392. Disponible en: https://www.redalyc.org/pdf/866/86601830.pdfLinks ]

29. Saavedra García ML, Camarena Adame ME. La gestión en las empresas dirigidas por mujeres. Equidad y Desarrollo. 2021;(37):75-97. Disponible en: https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1456&context=eqLinks ]

30. Organización Internacional de Trabajo-OIT. Las mujeres en la gestión empresarial: cuatro estudios de caso sobre las mujeres empresarias en América Central. Ginebra: OIT; 2019. Disponible en: https://www.ilo.org/es/publications/las-mujeres-empresarias-en-america-central [ Links ]

31. Banco Interamericano de Desarrollo. Cambiando el futuro de las mujeres emprendedoras en Paraguay [Internet]. Asunción: BID; 2014. Disponible en: https://publications.iadb.org/publications/spanish/viewer/Cambiando-el-futuro-de-las-mujeres-emprendedoras-en-Paraguay.pdf [ Links ]

32. Bonilla CA, Cancino CA. El impacto del Programa de Capital Semilla del Sercotec en Chile. Santiago de Chile: BID; 2011. Disponible en: https://webimages.iadb.org/publications/spanish/document/El-impacto-del-Programa-de-Capital-Semilla-del-Sercotec-en-Chile.pdf [ Links ]

33. Lacouture MC. Fondo de emprendimiento para la mujer será una realidad. Bogotá, Colombia: Congreso de la República de Colombia; 2023. Disponible en: https://www.senado.gov.co/index.php/el-senado/noticias/4311-fondo-de-emprendimiento-para-la-mujer-sera-una-realidad#:~:text=Este%20fondo%20financiar%C3%ADa%20los%20proyectos,del%20FEM%20en%20alg%C3%BAn%20municipio [ Links ]

34. Guerra Triviño OL, Hernández Castillo D, Triviño Ibarra CG. Incubadora de Empresas: Vía para el emprendimiento en las Universidades. Universidad y Sociedad. 2015;7(1):110-114. Disponible en: https://rus.ucf.edu.cu/index.php/rus/article/view/293Links ]

35. Alba Ortuño C. Modelo de Incubación de Empresas: una propuesta. Perspectivas. 2015; 36:65-90. Disponible en: https://www.redalyc.org/pdf/4259/425943146003.pdfLinks ]

36. Pérez Caldentey E, Titelman D. La inclusión financiera para la inserción productiva y el papel de la banca de desarrollo. Santiago de Chile: CEPAL; 2018. Disponible en: https://repositorio.cepal.org/server/api/core/bitstreams/48c62b04-7611-4a61-bd9f-f6dcc5c27c7d/content [ Links ]

37. Programa de las Naciones Unidas para el Desarrollo. Gestión de Negocios para Mujeres Emprendedoras: guía de Aprendizaje. Santo Domingo: PNUD; 2019. Disponible en: https://www.undp.org/sites/g/files/zskgke326/files/migration/do/pnud_do_guia-gestion-de-negocios.pdf [ Links ]

38. Asuad N. Teorías de la distribución espacial de las actividades esconómicas. México DF: CEDRUS; 2014. Disponible en: http://www.economia.unam.mx/cedrus/descargas/Teorasdistribucionespacial.pdf [ Links ]

39. Chalán-Martínez JP, Vásquez-Arias JA, Jaya-Pineda II, Serrano-Orellana BJ. Relación del nivel de formación académica de las mujeres sobre su capacidad emprendedora para la creación de emprendimientos Machala 2021. 593 Digital Publisher. 2021;6(6):18-35. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=8149606Links ]

40. León YM, Aguas Fernández TA, Rojas Gómez AM. Características de las mujeres emprendedoras. Repositorio Institucional UCC. 2017. Disponible en: https://repository.ucc.edu.co/server/api/core/bitstreams/393ee8f7-8ba1-45d4-9c7b-3409342b2473/contentLinks ]

41. Sanabria Zotelo E. Educación no formal e informal en las Mipymes Turísticas de Colonias Unidas, Itapúa-Paraguay. Ponencia presentada al: II Encuentro Internacional EAN 2020; 24-26 de agosto de 2021; Buenos Aires, Argentina. [ Links ]

42. Martínez Martínez SL. El emprendimiento por necesidad y por oportunidad: Relación con el desempeño en España. Ponencia presentada al: III Congreso Virtual Internacional sobre Economía Social y Desarrollo Local Sostenible; 2020. p. 201-209. Disponible en: https://www.eumed.net/actas/20/economia-social/14-el-emprendimiento-por-necesidad-y-por-oportunidad-relacion-con-el-desempleo-en-espana.pdf [ Links ]

43. Aguilar Morales N, Sandoval Caraveo MdC, Surdez Pérez EG. La gestión empresarial femenina en pequeñas empresas del giro industrial. Acta Universitaria. 2014;24(1):73-80. Disponible en: https://www.redalyc.org/pdf/416/41648308007.pdfLinks ]

Declaración de financiamiento: El presente trabajo fue financiado por el rectorado de la Universidad Nacional de Itapúa.

Declaración de autores: Los autores aprueban la versión final.

Luis Dávalos Dávalos. https://orcid.org/0000-0001-6850-2048 Sociedad Científica del Paraguay, Asunción, Paraguay

Received: December 04, 2023; Accepted: August 16, 2024

Autor corresponsal: Victoria R. Santacruz Oviedo:vrossmary@agr.una.py

Declaración de conflicto de intereses:

Los autores declaran no tener conflicto de interés.

Contribución de autores:

SZ y MR participaron en la elaboración del trabajo de investigación, procesamiento de muestras, análisis y discusión de los resultados, redacción del borrador y la versión final.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License